Getting to know your probabilities:
Three ways to frame personal probabilities for decision making.

Teddy Seidenfeld - CMU

An old, wise, and widely held attitude in Statistics is that modest
Intervention in the design of an experiment followed by simple
statistical analysis may yield much more of value than using very

sophisticated statistical analysis on a poorly designed existing data set.

In this sense, good inductive learning is active and forward looking, not

passive and focused exclusively on analyzing what is already given.

In this talk | review three different approaches for how a decision
maker might actively frame her/his probability space rather than being

passive in that phase of decision making.
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Method 1: Assess precise/determinate probabilities only for the set of
random variables that define the decision problem at hand. Do not
include other ""'nuisance’ variables in the space of possibilities. In this
sense, over-refining the space of possibilities may make assessing

probabilities infeasible for good decision making.

Example 1.1:
Random sampling: the “nuisance” of individual tags and

designing an experiment to prove. (K-S, 1990).

Example 1.2:
Juhl’s (1993) incompleteness for formal learning with computable

Bayesian methods.
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Example 1.1
* Simple Random Sampling — informal version.
Design an experiment to prove to a general readership what is the
percentage ky in a large population (> 10°) that bear property Z.
* A familiar approach is to use overt randomization to select a
sample (using random-numbers) and to perform routine statistical

Inference on the observed z-values in the sample.

For instance, with a sample of 100 randomly selected individuals from
the population, the probability is at least .95 that the percentage of Z in
the sample, z, differs from kz by no more than 10%o.

P(lkz- z| £ .10) = .95 (approximately)
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However, in order to apply overt randomization, in order to use
random numbers to sample the population, the individuals require tags
(=1, ...,10°%.

Then a straightforward formalization of the probability space for the
Inference about the percent of Z in the population, kz, has as the sample
space for the data the 100 pairs
{(; 5): =11, -+ Jroo}

where the j’s are the 100 randomly selected numbers.
However, unless the tags are irrelevant about Z,

P(lkz- z] £.10) # P(|kz- z| £ .10 |{t, ..., tjio} )-
For example, let the tags be individual Social Security numbers, which
reveal considerable information about, e.g., age and gender. Then the

tags introduce “nuisance” parameters into the statistical reasoning.
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If, e.g., Latanya Sweeney (2006) is among the readership of your
publication, the familiar statistical inference based on overt
randomization will no longer be compelling for her once the tags for
the sampled individuals are revealed.

BUT - the clever statistician can be careful to include the z-values but

NOT to include the tags in the sample space for probabilistic analysis.

1.J.Good (1971, #679) notes that sometimes a Bayesian can make sense
of a Classical Statistical procedure by avoiding parts of the data,

employing what he calls a Statistician’s Stooge.

I.Levi (1980, chapter 17) makes a similar distinction between

data as evidence and data as input!
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Example 1.2: Juhl’s (1993) incompleteness for formal learning with
computable Bayesian methods.

Let T be a recursively enumerable but not recursive set of integers,
e.g., the Godel-numbers of theorems of a particular first order theory.
The formal learning problem is to decide whether an integer k belongs

to T or not relative to a “data stream” {d;} of the elements of T.

The challenge Juhl sets for Bayesian theory is to construct a
straightforward probability analysis where, e.g., the (posterior)
probability for the event E,: K € T, given the growing data stream {d;},
converges to the truth value of E,.

lim,_,., Prob(Ex | d4, ..., dy} = indicator for E,.
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There are two familiar but significant impediments that block a
straightforward Bayesian solution of the kind Juhl requests.

(1) Given ordinary mathematical background knowledge, in each
measure space the random variable E, Is a constant — either it is
1(ifkeT)oritis0 (ifk & T). So, acoherent P(e), has P(Ey) =1,
or P(Ey) =0, respectively.

(2) ButassetT isre and not recursive — theoremhood is undecidable
the coherent probability from (1) is not computable.

This leads Juhl (1993) to conclude:
COROLLARY 1. There exist problems solvable by a recursive method but

that no computable coherent Bayesian can possibly solve.

Aside: The problem is solvable by positing “k & T and changing to
“k & T” if and only If k appears among the data stream {d,, ..., d,, ...}.
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However, the computable Bayesian decision maker faced with this
formal learning problem can solve the problem by taking charge of the
measure space over which probability is defined.
(Counter) Example 1.2".
Let X be an integer random variable. Partially define the probability
distribution for X as follows:
e P(X=d,|XET)=2" GiventhatXE T, letP(X=d,)=2".
e P(XE T) =.4. Unconditionally, P(XE T) < P(XE& T).
The Statistician’s Stooge knows that X = Kk, but that is not part of the
Statistician’s evidence. The Stooge checks whether X =d,, or not and
reports just that fact to the Statistician as the evidence dy,.
Then lim,_. Prob(Xe T|dy, ..., dy)

Is a coherent, computable Bayesian solution to the learning problem.
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Method 1 for getting to know your probabilities is to avoid including
more in the sample space than is required for robust inference -
Inference free of nuisance parameters: about which there may be
conflicted personal opinions or infeasible computations, and about
which the experiment may be silent.

* Inexample 1.1, overt random sampling, the key to constructing the
measure space iIs to avoid including the tags in the sample space.

* In example 1.2/1.2", Juhl’s formal learning problem for an re set,
the key to constructing the measure space is to avoid including the
(name of) the number tested in the sample space.

In both examples, the statistician restricts the measure space to a

proper subset of the “input space” used to solve the problem!
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Method 2: With respect to a particular decision problem, choose wisely

the set of events £ that you can assess with probabilities.

Coherence (as in de Finetti's theory) requires that you extend these

probabilities to the linear span generated by &€, which may be a smaller

and simpler set than the Boolean algebra generated by &.

If £ is wisely chosen, the decision problem at hand may be solved by

the assessments over the smaller space.

Let us review de Finetti’s (1974) two related theorems.
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Coherence - de Finetti's notion of (2-sided) coherence begins with
a partition of states, Q = {w;: i € I}, and

a collection of real-valued variables, y = {Xj:j € J}, defined on Q.

Note: In some settings de Finetti begins instead with logical
variables and forms a partition of “constituents,” i.e., the
smallest common refinement under which all the variables are

measureable.

For each random variable X € yx, the rational agent, the booKkie, has

a prevision P(X) which is to be interpreted as a fair price both for

buying and selling units of X.

Hence, the prevision is 2-sided price.
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For real B > 0 small enough the bookie enters the market with a

fair buy/sell price P(X) for X.
The bookie

* is willing to pay BP(X) in order to buy X in return.
and,

* is willing to accept BP(X) in order to sell X in return.

In symbols, the bookie will accept the gamble

BIX - P(X)]
as a change in fortune, for all sufficiently small, positive or

negative f.
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That s, for all finite n and all small, real valued f1, ..., » and all

X1, .., Xn € ¥, the bookie will accept the combination of gambles

?=1 Bi[Xi — P(Xi)].

The |Bi| must be small enough so that, also, the bookie is prepared

to accept all finite sums of gambles of the preceding form.

For positive B, the bookie buys fi-units of X; for a price of fiP(Xi).
For negative f3;,, the bookie sells fi-units of X; for a price of BiP(Xi).

Thus, the combinations of the bookie’s “fair” previsions cover the

span (= all finite linear combinations) of the variables in y.
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Consider an opponent to the bookie, the gambler, who may select

which of the bookie’s fair contracts to accept. The bookie’s
previsions are incoherent if there is a uniformly negative finite

combination of gambles that are acceptable to the bookie.

That is, the bookie’s previsions are incoherent if the gambler can

choose finitely many non-zero i where € > 0 and for each w € Q,

> 1 BilXi(w) - P(Xi)] < -e.

Otherwise the booKkie’s previsions are coherent.
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* Where previsions are incoherent, the book that indicates this
constitutes a combination of gambles uniformly, strictly dominated
by not-betting (= 0).
Notes:
* Checking for coherence/incoherence of a finite set of

previsions is a linear programming problem.

* When a set of previsions are incoherent, many different
“books” may be constructed. These may indexed in different
ways in order to quantify a degree of incoherence. -- See, e.g.,

SSK (2003) Measures of Incoherence.

e We return to this theme with Method 3.
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1st de Finetti Theorem for Coherent Previsions.

* A set of previsions are coherent if and only if they are the
expected values for the respective random variables under a

(finitely additive) probability distribution over Q.

* When the variables are indicator functions for events (subsets
of Q), coherent previsions are exactly those in agreement with
a (finitely additive) probability. And then the | B;| are the

stakes in winner-take-all bets, where the previsions fix betting

rates,

P(X;) : 1-P(Xi).
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Method 2 for getting to know your probabilities

2nd de Finetti theorem: The Fundamental Theorem of Previsions

Suppose coherent previsions are given for all variables in a set

defined with respect to Q.
Let Y be a real-valued function defined on Q but possibly not in ¥.
Define: A ={X: X(w) = Y(w) and X is in the span of x}

A={X: X(w) = Y(w) and X is in the span of i}
Let
P (Y) =supxcaP(X) and P (Y)=infx-s P(X)

Aside: Think of inner/outer measure fixed by the set .
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Then the prevision, P(Y), may be any finite number from P (Y) to

P (Y) and the resulting enlarged set of previsions is coherent.

Outside this interval, the enlarged set of previsions are

incoherent.
That is,

The interval for a new prevision [P (Y) P (Y)] given by the
Fundamental Theorem constrains a new prevision for a
variable, Y&, while preserving coherence of the previsions

already assigned to XEy.

Aside: This is an instance of Imprecise Probabilities - IP theory

Advertisement: See www.sipta.org!
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Thus, coherence for previsions does not require the rational
bookie to identify precise previsions beyond those in the span of

the variables in the set ¥.

Specifically, the rational agent is not required by coherence to have
determinate probabilities defined on an algebra of events, let

alone on a power-set of events.

It is sufficient to have probabilities defined as-needed for the

arbitrary set x, as might arise in a particular decision problem.

* See, e.g, F. Lad, 1996 for interesting applications of this result.
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Toy Example (Example 2.1)
Q ={1, 2, 3,4, 5, 6} the outcome of rolling an 6-sided die.

« 1s the set of indicator functions for the following four events

x ={{1},{3,6},{1,2,3}, {1,2,4} }

Suppose previsions for these four events are given, and agree with

the judgment that the die is “fair.”

P({1}) =1/6; P({3,6}) =1/3; P({1,2,3}) = P({1,2,4}) = 1/2.

By the 1st of de Finetti’'s 2 results, these are coherent previsions.
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The set of events for which a determinate prevision is fixed by the

previsions for these four events is given by the Fundamental Theorem.

* That set does not form an algebra. Only 22 of 64 events (11 pairs of
complementary events) have precise previsions.
For instance, by the Fundamental Theorem,
P({1,2,3}) = 1/2

likewise P({1,2,4}) = 1/2;

however, P({1,2))=1/6 < P({1,2})=1/2.

* Moreover, the smallest algebra containing the 4 events in x is the

power set of all 64 events on Q.
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Method 3: Your probabilistic assessments may be incoherent so that
you may be exposed to a sure-loss in your decision making about some
specific quantities.

Nonetheless, you may be able to use familiar algorithms (e.g., Bayes®
theorem) to update your views with new data and to improve your

Incoherent assessments about these quantities.

That is, you may be able to reduce your degree of incoherence about
these quantities by active, Bayesian-styled learning. Specifically, by
framing your probability space so that incoherence is concentrated in
your "'prior," you may use Bayesian algorithms to update to a less-

Incoherent ""posterior."

Getting to know your probabilities - CFE @ CMU June 2010

22



Example 3.1: How to wager from an incoherent position.

Aside: In this section we restrict ourselves to previsions,
rather than working with lower and upper previsions, in order

to simplify the analysis of the Gambler’s optimal strategy.

Let {E4, ...., EL} form a partition, and let 0 = p(E;) = 1 be the
Bookie’s previsions for these n-many events.
* Assume that no one of these previsions is incoherent, by itself.

Let ", p(E;) = q. Itmightbe that q = 1, so that the Bookie's
previsions are incoherent.
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Next, the Bookie is called upon to set a price p(X) for a new
random variable X, measurable with respect to this partition,

i.e., X= EiXiEi, .

* What can the Bookie do with the value of p(X) to avoid
increasing her/his measure of incoherence?

Aside: See SSK (2003) for a family of indices of incoherence.

For notational ease, order the events so that xy =< X, = .= Xx,,
Assume that x; = p(X) = x,,, so that by itself p(X) is coherent.

Define W = Y;iX;iDj

You may think of p as the pseudo-expectation for X with respect

to the Bookie’s incoherent distribution P(*) for the x;.
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Theorem for the rate of loss - at what rate can the Gambler force

the Bookie to lose for sure? (Recall: ¥, p(E;) = q.)

The Bookie can avoid increasing the rate of loss with a prevision

for X that satisfies the following conditions:

* If g <1, choose p(X) to satisfy

1-

n-1.
I

Xj

.
(NS

l_qn—l
nw+ — > X5 = p(X) s pn+
i=1 2

* If g > 1, choose p(X) to satisfy
max{ X1 Bo- (q'l)xn} < p(X) = min{ Xp W - (q'l)xl}

* If g = 1, choose p(X) to satisfy the Bayes solution
w = p(X).
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Theorem for the rate of gain - at what rate can the Gambler force a

rate of profit, for sure? (Recall: ¥, p(E;) = q.)

The Bookie can avoid increasing the rate of gain by setting a

prevision for X as:

Choose p(X) to satisfy
u+(1-9)x; = p(X) s u+(1-q)x,

Corollary: You don’t have to be coherent to like Bayes’ rule!

Consider a ternary partition

{Eq, E5, E3} with previsions {pq, p2, p3}-
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Let X be the called-off r.v. for the called-off wager on E3 vs Ej.
Eq E; E;

X(E1) =0, X(Ep)=p(X), X(E3)=1
Thus, a (X - p(X)) has the respective payoffs:
-op(X) 0 a(1-p(X))
Then, e.g., with g < 1, the Bookie wants to satisfy the inequalities:
p2p(X) + p3 = p(X) = pyp(X) + p3 + (1-q)
If the Bookie uses a pseudo-Bayes value, the inequality is
automatic, as follows:

p(X) =p(E3 || {E1,E3}) = p3/(P1*P3)
“as if” calculating p(E3 | {E{,E3})

Hence, betting like a coherent Bayesian makes sense even if you are
incoherent!
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Summary — Three ways of getting to know your probabilities.

Method 1: Assess precise/determinate probabilities only for the set of
random variables that define the decision problem at hand. Do not
Include other ""'nuisance’ variables in the space of possibilities. In this
sense, over-refining the space of possibilities may make assessing

probabilities infeasible for good decision making.

Method 2: With respect to a particular decision problem, choose wisely

the set of events £ that you can assess with probabilities. Coherence

requires assessments over a linear span, which may be a much smaller

set than the algebra (i.e., basic logic) of events for the same events.
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Method 3: Your probabilistic assessments may be incoherent so that
you may be exposed to a sure-loss in your decision making about some

specific quantities.
Nonetheless, you may be able to use familiar algorithms (e.g., Bayes®
theorem) to update your views with new data and to improve your

Incoherent assessments about these quantities.

* You don’t have to be coherent to like Bayes’ Theorem!
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